Creatively tiling a bathroom floor isn’t just a stressful task for DIY home renovators. It is also one of the hardest problems in mathematics. For centuries, experts have been studying the special ...
Infinitely many copies of a 13-sided shape can be arranged with no overlaps or gaps in a pattern that never repeats. David Smith, Joseph Samuel Myers, Craig S. Kaplan and Chaim Goodman-Strauss (CC BY ...
Mathematicians have discovered a single shape that can be used to cover a surface completely without ever creating a repeating pattern. The long-sought shape is surprisingly simple but has taken ...
A new 13-sided shape is the first example of an elusive "einstein" — a single shape that can be tiled infinitely without repeating a pattern. When you purchase through links on our site, we may earn ...
Tiling a space with a repeated pattern that has no gaps or overlaps (a structure known as a tessellation) is what led mathematician [Gábor Domokos] to ponder a question: how few corners can a shape ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results